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In the present study, which is an extension of [lI, we consider in the 

rigorous formulation (for the nonlinear case and without passing to pre- 

cession theory) the stability of the motion of two-rotor gyrocompasses 

not having the properties of the Geckeler-Anschctz spatial gyrocompass. 

The article gives the first integral of the equations of motion, 

which is used for obtaining sufficient conditions for the stability of 

the unperturbed motion of the system. 

1. Let On”yozo and Oxyz be right-handed coordinate systems whose 

origins coincide with the point of suspension [21 . 

The attitude of the trihedron OXYZ with respect to the trihedron 

ox y z o ’ ’ will be defined by the angles a, p and y. The direction cosines 

G,, 6 
of [l 9. 

and y, between these trihedrons are defined by equations (1.1) 

The motion of a two-rotor gyrocompass is described by the System of 

four equations (1.2) given in Ill. 

In the present study we shall assume that the restoring moment of 

the spring connection between the gyroscopes satisfies the condition 

N = s sin 6 cos 6 (1.1) 

where s is the slope of the characteristic of the moment in question 

and 6 is the angle by which the gyroscope axes deviate from the selected 

design value, which would correspond to E = me. 

Thus 

1344 



The stability of gyrocostpasses 1345 

6 =8-&p 

Unlike [11 , the present investigation will take 
into account in the equation describing the motion 
within the gyrosphere. 

Using the same assumptions as in [II, the above 

(1.2j 

the term -21d2E/dt2 

of the gyroscopes 

system admits of a 
I- -I 

first integral, which is obtained in a way completely similar to LlJ. 

This integral is of the form 

v nz ‘I&p2 -/- ‘l&q2 -I- V&r2 f I& -f- lizs sin% - (F - mva / R) Q8 - mvlQ6, - 

- [.@P, + (Bq + H) $2 -f- Cr%l D - LQ6, + (Bq 9 H) 6, + Cr6,l v /‘R = C, (1.3) 

2. The integral (1.3) can be used to obtain sufficient conditions 
for stability. The equilibrium positions of the system will be repre- 
sented by the following values of the coordinates: 

a = 0, P =p*, 7 = 0, 8 = CT* 

where p* and 6* satisfy the equations 

(C - B) P/a IQ2-- co*] sin .23* + 0 Q COS 33*) - 

-2pcoS (S,, f S*) (8 cos /3* - o sin p*) = - (F - mvu) b Sin 3* - mrla Cos p* 

- (0 cos 3* f Sz sin 3*) 2B’ sin (e,, f 6*) = s Sin 6’ COS a* (o = v/R) 

The motion defined by equations (2.1) will be considered as the 
perturbed motion. 

We now consider the perturbed motion 

a = Xl, P = P* + x2, 7 = Qc,, 8 = 8* -j- X‘ 

Designating by V,., the value of V when xS = 0 and i, = 0 (s = 1, 
3, 4). we calculate the difference V - V,,. We have 

4 4 

V-v, = 2 bij,i;j t_ 2 cklxkxr + . . . 

i, j=l k, I-1 

where the symbol . . . represents higher-order terms in xS and is. 

Here 
b,, z lfa (3 sin2 3* + C cos2 p*), bza = ‘/,A, b,, = ‘l,B 

b,, = b,, = 0, b,, = bzl = ‘/& sin 3*, b,, = b,, = 0 

fi44 = 

(2.1) 

(2.2) 

un- 

(2.3) 

2. 

(2.4) 

(2.5) 
I 

b,, = b,, = 0, bp4 = b,, = 0, b,, = b, =0 
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cl1 = 1/z 0 (-- mlR t2 sin /3* - Aw + fB (co9 @*o + 52 sin p*) + 

+ 2B’ cos (ep+ 6*)] cos p* + C (sin p*o-- !2 cos p*) sin p*) 

c,, = I/% {(C - B) [(Q cos f3* - sin p*o)% - (52 sin p* + cos p*0)2] + 

+ [(F - mvw) I + 2B’ cos (q, f 6*) w]. cos p* - 52 [mvl - 2B’ cos (e. 1_ 6*)1 sin p*} 

c,s~~/a~(C-~)(Qc0s~*-sin~*0)2+(F-mvw)1cos~*-mvlS2sin~*] 

cpq =2 11% [J cos 26’ + 2B’ cos (e6 Jr 6*) (52 sin @* $- cos @* o ) ] 

cl* = c,, = 0, ci* = c*, = 0, c2.J = CQ$ = 0, ca* = c*a = 0 

cr, =I: cgl z 1/Z 0 [(C - A) (sin p* 0 - 52 cos @*) - mfR Q] 

cza = cp2 = l/22B’ sin (E,, + 6*) (Q cos p* - sin p* o) 

Applying to the first quadratic form of expression (2.4) Sylvester’s 

criterion, we obtain the always implemented inequality 

B sin2 p* + C cOsa p* > 0, A > O, BC co9 p* > 0 j I I>0 W) 

Applying Sylvester’s criterion to the second quadratic form in 

formula (2.4), we find that it is positive-definite for sufficiently 

small values of .zs if the following inequalities are satisfied: 

Cl1 > 07 c2z > 0, %I%3 - %32 > 0, 42% - %2 > 0 (2.7) 

The for V - V, will also be positive-definite if conditions (2.7) 

are satisfied. 

Since its total derivative is identically equal to zero by virtue of 

the equations of perturbed motion, it follows that the unperturbed 

motion (2.1) will be stable in the Liapunov sense. It should be noted 

that equations (2.2) have the solution p* = 0 if E. satisfies the equa- 

tion 

The value 6* is determined by the equation [31 

2B’ cos (eg j- 6*) = mlv (1 -/- x) 

Introducing the notation 

(2.9) 

(2.10) 
” = 

FZs 

[ZB sin (80 + S*)]” 
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we find the following explicit expressions for the coefficients ckl: 

and the inequalities (2.7) assume the simple form 

mZv I+EL$Q]>o, c FZ[I+X($)~]>O, F--m~-mRQ30 

p~[l+X(37~os2a*+!g(l+X)]- SF>0 (2.12) 

3. The sufficient conditions for stability (2.12) permit degeneration 
to the case of precession theory. If in (2.12) we neglect the terms con- 
taining the quantities A, R and C as factors and if we set cos 26* 

to unity because the angle F* is so small, we obtain the following 
equalities: 

mR@>O, PI”-- 522 > 0 PI2 = P” 

equal 

in- 

(3.1) 

Since, in addition. we always have sR >> mlv2, it follows that we may 
take pl = p. If we now set F - mv2/R = mg, we obtain from (3.1) the in- 

equalities 

S-P - p2 < 0, Q2 - v= < 0 (y = 1/g/W (3.2) 

previously established in [d, These same inequalities are also obtained 

for the case of complete kinetic symmetry. when A = B = C. 

To obtain necessary conditions for stability, we can consider the 

corresponding equations in the variations. 

The precession formulation of this problem was considered in 141. It 

was shown there that if 

(GP- p2) (SF- VS) < 0 (3.3) 

then the unperturbed motion is unstable. 
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